

THE AFFORDABILITY OF FLOOD RISK PROPERTY-LEVEL **ADAPTATION MEASURES**

Paul Hudson

University of Potsdam

phudson@uni-potsdam.de

PROPERTY-LEVEL ADAPTATION

Part one of affordability, is it a worthwhile investment

WHAT CAN PEOPLE DO?

Dry flood-proofing

Wet flood-proofing

IS IT EFFECTIVE?

Table 1 Damage-reducing effects of precautionary measures undertaken by private households on the building level

Measure	Reduction	Source	
Wet proofing			→ [35%,50%]
Flood-adapted use	46-48 %, 30-40 %	Kreibich et al. 2005a; ICPR 2002	
Flood-adapted interior fitting	53 %, 15–35 %, 35–45 %	Kreibich et al. 2005a; ICPR 2002; DEFRA 2008	
Installation of heating and electrical utilities in higher storeys	36 %	Kreibich et al. 2005a	
Avoidance of contamination	35-52 % >50 %	Kreibich et al. 2005a; ICPR 2002	
Dry proofing			\rightarrow [24%.60%]
Temporary resistance, e.g. mobile water barriers	29 %, 60-80 %, 50 %	Kreibich et al. 2005a; ICPR 2002; DEFRA 2008	
Flood-adapted building structure, e.g. cellar sealing, permanent flood proof doors and windows	24 %, 10-85 %, 65-84 %	Kreibich et al. 2005a; ICPR 2002; DEFRA 2008	
Building without cellar	22–24 %	Kreibich et al. 2005a	

Kreibich et al. (2015)

IS IT COST-EFFECTIVE AND...

Wet proofing

Figure 16: Benefit cost ratio curves (flood resilience packages) by return period

....ARE THEY AFFORDABLE?

Table 7: Summary of flood repairable packages from Lamond et al. (2016b)

Package Number: A1 House Type 1: Semi-detached Net Internal floor area: 49m2

Repairable Package

Salt resistance added to lime plaster Retain timber floor and door Removable carpets and vinyl flooring Rising butt hinges for internal doors Removable kitchen cabinet doors Acrylic bath panel and wall mounted vanity unit Raised sockets + Non return valve

Cost of package: £11,420 Like for like comparison: £8,950 Additional cost of repairability: £2,470

Package Number: B7

House Type 7: Semi-detached Net Internal floor area: 48m2

Repairable Package

Water resistant wall boards Closed cell insulation Retain timber floor Replace door with UPVC Ceramic tiles to floor Rising butt hinges for internal doors Removable kitchen cabinet doors Raised sockets + Non return valve

Cost of package: £10,930 Like for like comparison: £7,410 Additional cost of repairability: £3,520 Package Number: A2 House Type 2: Mid-Terraced Net Internal floor area: 37m2

Repairable Package

Sand and cement render Closed cell insulation Retain concrete floor and timber door Quarry tiles and ceramic tiles to floor Rising butt hinges for internal doors Removable kitchen cabinet doors Raised sockets + Non return valve

Cost of package: £7,420 Like for like comparison: £5,530 Additional cost of repairability: £1,890

Package Number: C8 House Type 8: Mid-Terra

House Type 8: Mid-Terraced Net Internal floor area: 72m2

Repairable Package

Cavity membrane and sacrificial gypsum (horizontal) Closed cell insulation Retain concrete floor Replace external doors with UPVC Removable carpets and ceramic tiles to floor Rising butt hinges for internal doors Removable kitchen cabinet doors Raised sockets + Non return valve

Cost of package: £12,540 Like for like comparison: £7,770 Additional cost of repairability: £4,770 Cost without membrane: £3,230 • Affordability is a common policy objective for flood risk management or climate change adaptation...

 ...however its subjective nature means it is difficult to measure.

- But we need to!
 - But still has kinks

AFFORDABILITY DEFINITIONS

...the subjective part

WHAT IS AFFORDABILITY?

• That an expenditure doesn't overly burden a person's budget

• Still subjective

• Some proposed definitions (from within flooding)

- Doesn't cost more than X% of annual income (expenditure)
 - 5% of disposable income, following Kousky and Kunreuther (2014)
- Doesn't reduce a person's disposal income to a level lower than the poverty line (residual income)

o 60% of national median disposable income

STILL A BIT MORE WORK NEEDED

Purchase affordability

- Can we afford it all in one go
 - Income + savings
- Assumes, in essence, that there are no other cost spreading mechanisms

Payment affordability

- Can we afford payments if the cost is spread overtime
 - Like a loan
 - 20 years
 - Interest rate = rate of inflation
- Can be from a bank, charity, govt. or a combination

COST ESTIMATES

ONE TABLE OF COSTS TO RULE THEM ALL

	Flo				
	(scheme 1)	(scheme 2)	(scheme 3)	(scheme 4)	
	Average	Adjusted	Cost per	Cost per	Size of
	Cost per	average	square/linear	square/line	dwelling
	building	costs per	meter on	ar meter on	(across the
	(Aerts,		European	American	European
	2018)	costs (~1m)		costs (~1m)	Union and
				based on	income
				Aerts et al.	groups)
				2013	
Wet flood-	€2,100 to	€1,700 to	€104 to €332	€33 per m ²	$96m^2$
proofing	€20,600	€23,000	per m ²		
Dry flood-	€7,900 to	€6,300 to	€423 and	€285 per	39m
proofing	€20,200	€23,000	€695 per	linear	perimeter
			linear meter	meter	

RESULTS

THE HIGHEST QUINTILE FOR WHICH FLOOD-PROOFING IS FOUND PURCHASE UNAFFORDABLE, ON AVERAGE ACROSS COST SCHEMES

 ${f A})$ Average Quintile in which dry flood-proofing is found to be unaffordable

PERCENTAGE CHANGE IN THE RATE OF UNAFFORDABILITY DUE TO LOW COST LOANS UNDER THE RESIDUAL INCOME DEFINITION

A) Percentage decrease in the rate of unaffordability (percentile) for dry flood-proofing

B) Percentage decrease in the rate of unaffordability (percentile) for wet flood-proofing

FLOOD IMPACT INDICATORS AND AREAS OF OVERLAP WITH UNAFFORDABILITY

Kilometers

COMBINED SCORE OF VHI AND REP UNDER PURCHASE AFFORDABILITY

CONCLUSIONS

TAKE HOME MESSAGES

- We seem to assume that people have mechanisms, or resources, in place to buy these measures
- If we don't then we can have high rates of unaffordability
- Introducing this idea of social loans might help
 - Can be a partnership across sectors
- Still some issues to work out with how a social loan scheme might work
 - Moral hazard
 - Social transfers if people don't pay the loan back?

REFERENCES

- Aerts, J.C.J.H. (2018) A Review of Cost Estimates for Flood Adaptation. Water 10, 1646.
- Kreibich, H., Bubeck, P., Van Vliet, M., De Moel, H. (2015) A review of damage-reducing measures to manage fluvial flood risks in a changing climate. Mitigation and Adaptation Strategies for Global Change 20, 967-989.
- Lamond, J., Rose, C., Bhattacharya-Mis, N., Joseph, R., (2018) EVIDENCE REVIEW FOR PROPERTY FLOOD RESILIENCE PHASE 2 REPORT. Flood Re and UWE Bristol.
- Hudson, P. (2018) A comparison of definitions of affordability for flood risk adaption measures: A case study of current and future risk-based flood insurance premiums in Europe. Mitigation and Adaptation Strategies for Global Change 23, 1019-1038.
- Kousky, C., Kunreuther, H. (2014) Addressing Affordability in the National Flood Insurance Program. Journal of Extreme Events 1, 1450001.
- Hudson, P., Botzen, W.J.W., Feyen, L., Aerts, J.C.J.H. (2016) Incentivising flood risk adaptation through risk based insurance premiums: trade-offs between affordability and risk reduction. Ecological Economics 125, 1-13.

