



Applied and Engineering Sciences

# Understanding levee failure patterns to complement flood risk assessments

System-Risk 2019 Conference

I. Ece Özer TU Delft Faculty of Civil Engineering and Geosciences (CiTG) Department of Hydraulic Engineering Hydraulic Structures & Flood Risk



#### Background

- Levee failures can lead to enormous damages and loss of life
  - Ø New Orleans (2015)



Germany (2013)

- Demand on detailed risk analysis & management of levee systems
- Large uncertainties in modelling and predicting the failures
- No systematic analysis of multiple failure events



- Background

- Conclusions

- ILPD

- SAFElevee Project

- Macro-scale analysis

#### **SAFElevee Project**

- Background

- SAFElevee Project

- ILPD

- Macro-scale analysis

۲

- Conclusions

- To improve the understanding of failure mechanisms and breaching of flood defence systems
- To enhance failure models, reliability analyses and designs of flood defences
  - To provide systematically collected datasets for future scientific research

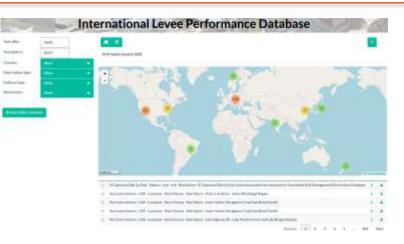




#### **SAFElevee Project - WP's**

#### 1. Levee failure patterns




- SAFElevee Project
- ILPD
- Macro-scale analysis
- Conclusions



#### 3. Breach initiation and development



#### 2. International Levee Performance Database



#### 4. Hindcasting of failures

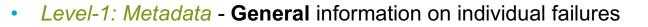


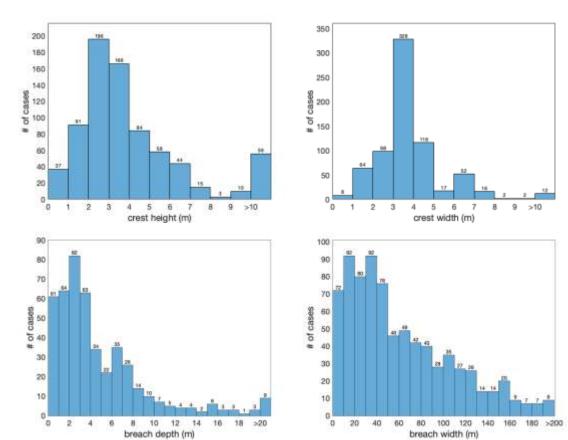


# International Levee Performance Database (ILPD)

- Background
- SAFElevee Project
- ILPD
- Macro-scale analysis
- Conclusions

- Full-scale testing is challenging and costly
- Historical failures provide insights into the real failure processes and conditions
  - $\circ$  No systematically gathered large-scale datasets
  - Several databases for levee breaches only generic information
  - $\circ$  Limiting the scientific analyses


#### ILPD:


- ü Structured
- ü Open-access
- ü Regularly updated global database



#### **ILPD** - content

- Background
- SAFElevee Project
- ILPD
- Macro-scale analysis
- Conclusions





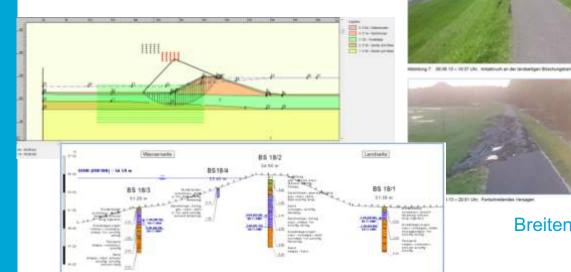
**TU**Delft

6

#### **ILPD** - content

- Background
- SAFElevee Project

•


•

- ILPD
- Macro-scale analysis

**ŤU**Delft

- Conclusions

- Level-1: Metadata General information on individual failures
- Level-2: Intermediate Detailed geotechnical investigations and breach processes of historical levee failures and earthen dams





Abbiturg 8 08.08 13 - 14 10 Uhr. Heraortal-analisturger, AutoHiurg and Full



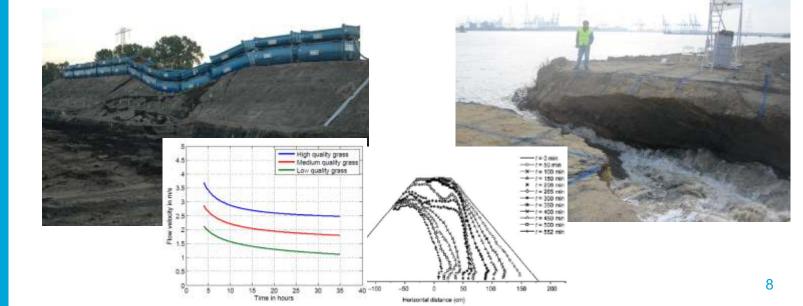
Names of the second sec

Breitenhagen, Germany (2013)

#### **ILPD** - content

- Background
- SAFElevee Project

•


•

- ILPD
- Macro-scale analysis

**ŤU**Delft

- Conclusions

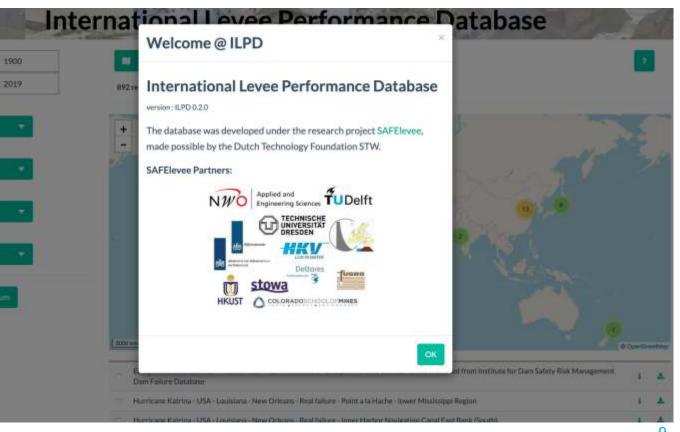
- Level-1: Metadata General information on individual failures
- Level-2: Intermediate Detailed geotechnical investigations and breach processes of historical levee failures and earthen dams
- Level-3: In-depth Detailed datasets of small- and large-scale experiments



Year after:

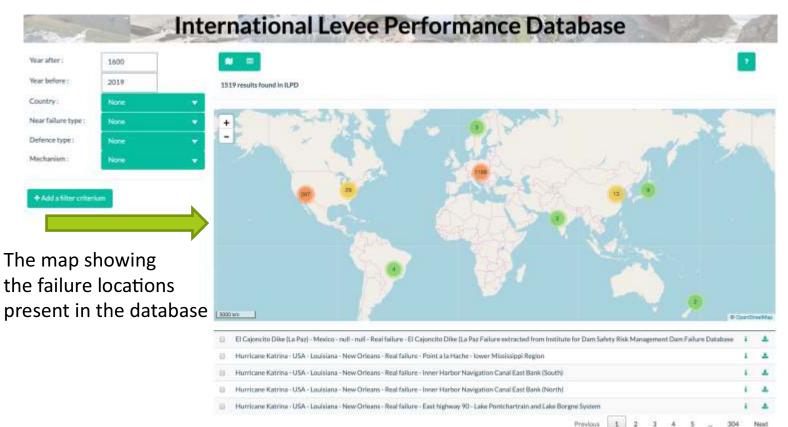
Year before:

Near failure type :


Detence type :

Mechanism

Country.


#### <u>leveefailures.tudelft.nl</u>

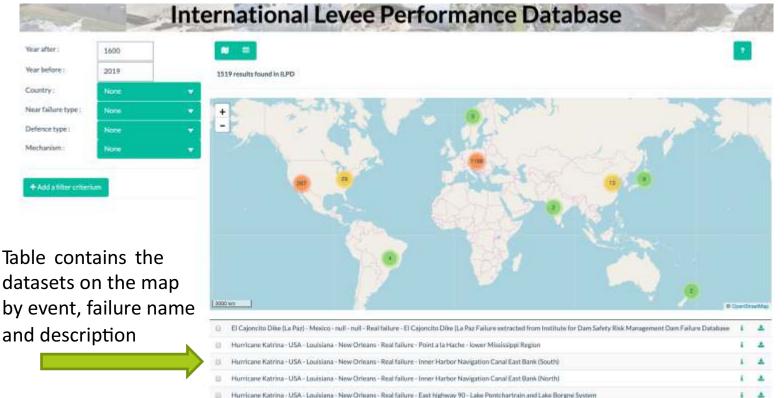
- Background
- SAFElevee Project
- ILPD
- Macro-scale analysis
- Conclusions

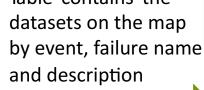


- Background
- SAFElevee Project
- ILPD
- Macro-scale analysis
- Conclusions

Interactive map with failure events







- Background
- SAFElevee Project
- ILPD
- Macro-scale analysis

**ŤU**Delft

- Conclusions

Interactive map with failure events

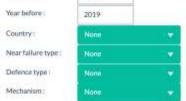




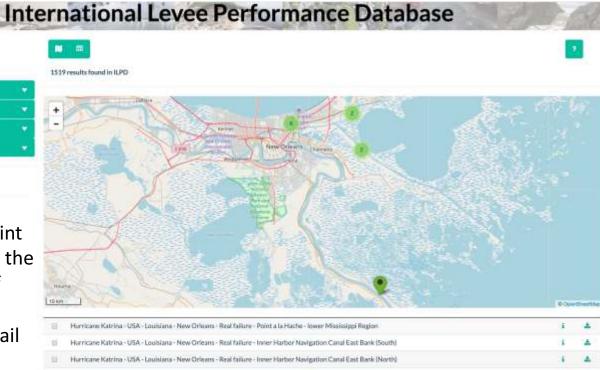
1 2 3 4

Previous

Dataset containers




- SAFElevee Project
- ILPD
- Macro-scale analysis


**ŤU**Delft

- Conclusions

# Year after: 1600



Clicking a dataset point automatically zooms the map to the extent of these datasets, showing in more detail on the map



Hurricane Katrina - USA - Louisiana - New Orleans - Real failure - East Nighway 90 - Lake Pontchartrain and Lake Borgne System Hurricane Katrina - USA - Louisiana - New Orleans - Real failure - East Back Levee - Lake Pontchartrain and Lake Borgne System

Previous 1 2 3

- Easy filter options
- Year after:
  1900

  Year before:
  2016

  2016
  100 results found in ILPD

  Country:
  None

  Failure type:
  None

  Defence type:
  None

  Mechanism:
  None

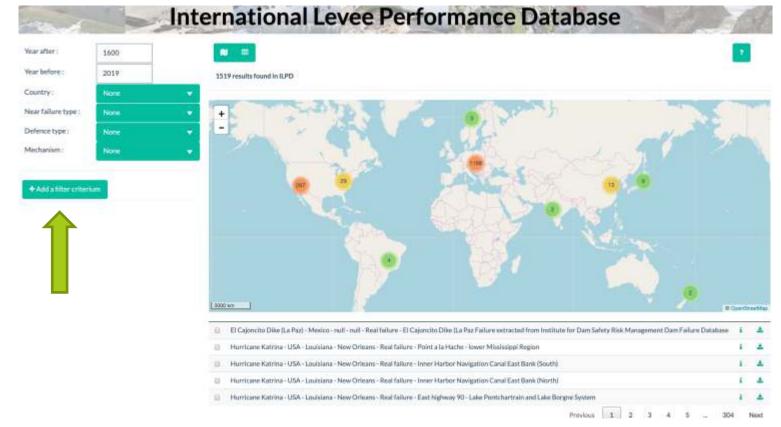
filter the datasets for specific failures dates and for a specific country

- Background
- SAFElevee Project
- ILPD
- Macro-scale analysis
- Conclusions



Easy filter options

| -              | -    | in the | Internati                 |
|----------------|------|--------|---------------------------|
| Year after :   | 1900 |        | <b>N B</b>                |
| Year before :  | 2016 |        | 100 results found in ILPD |
| Country :      | None |        |                           |
| Failure type : | None |        | +                         |
| Defence type : | None |        |                           |
| Mechanism:     | None | *      |                           |


Other easy filter options are:

- failure type (e.g. a real failure or a experiment)
- defense type (e.g. a levee or a floodwall)
- failure mechanism (e.g. overtopping or instability)



- Background
- SAFElevee Project
- ILPD
- Macro-scale analysis
- Conclusions

Advanced filter options



- Background
- SAFElevee Project
- ILPD
- Macro-scale analysis

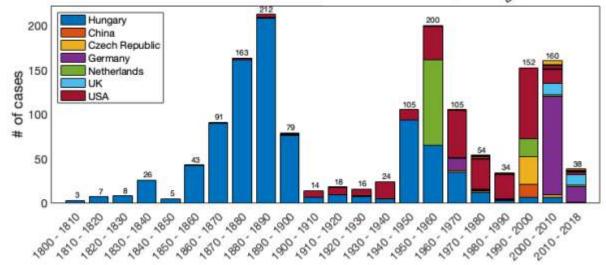
**ŤU**Delft

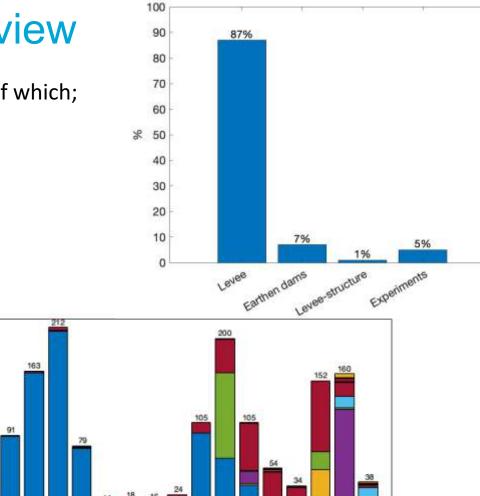
- Conclusions

- Background
- SAFElevee Project
- ILPD
- Macro-scale analysis
- Conclusions



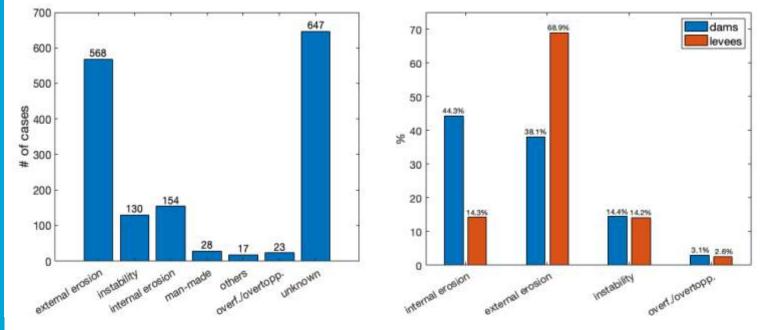



## **ILPD** - overview


~ 1600 failure cases of which;

- Background
- SAFElevee Project
- ILPD
- Macro-scale analysis

**ŤU**Delft

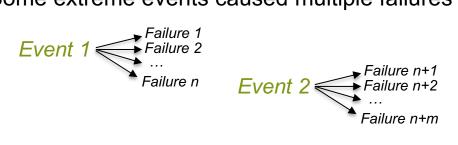

- Conclusions





#### **ILPD - Failure mechanisms**

- Background
- SAFElevee Project
- ILPD
- Macro-scale analysis
- Conclusions






#### ILPD – Events

- Background
- SAFElevee Project
- ILPD
- Macro-scale analysis
- Conclusions



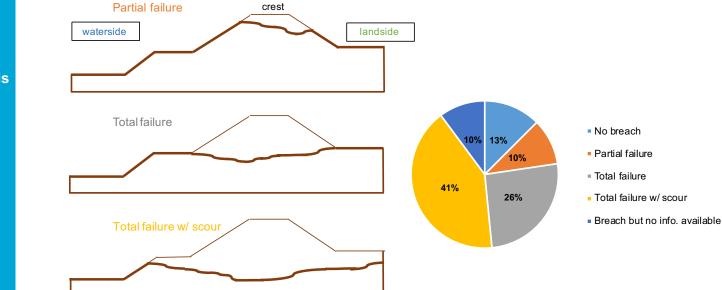


- ~40% of the failures occurred in the events with more than one failure
  - Germany (2002) with 111 failures
  - Netherlands (1953) with 101 failures
- Information can be used to inform and improve (local) flood risk assessment



- Elbe tributaries
- Extreme meteorological conditions
  - Two catastrophic flooding events
    - 2002: 111 levee failures
    - 2013: 17 levee failures






- Background
- SAFElevee Project
- ILPD
- Macro-scale analysis
- Conclusions



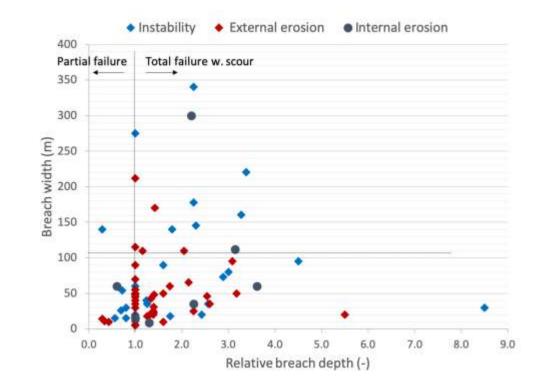
#### Damages on levees

Degree of damage on the levee cross section



- Background
- SAFElevee Project
- ILPD
- Macro-scale analysis
- Conclusions




Main failure mechanisms

- Background
- SAFElevee Project
- ILPD
- Macro-scale analysis
- Conclusions



| Main failure mech.          |
|-----------------------------|
| External Erosion 64         |
| Internal Erosion            |
| Instability 32              |
| Overflow/<br>Overtopping 10 |
| Unknown 3                   |
| Total 128 cases             |

Breach characteristics per main failure mechanism



- Background
- SAFElevee Project
- ILPD
- Macro-scale analysis
- Conclusions



Initial and main failure mechanisms

- Background
- SAFElevee Project
- ILPD
- Macro-scale analysis
- Conclusions



| ( | Main failure mech.          |
|---|-----------------------------|
|   | External Erosion 64         |
|   | Internal Erosion            |
|   | Instability 32              |
|   | Overflow/<br>Overtopping 10 |
|   | Unknown 3                   |
|   | Total 128 cases             |

- Initial and main failure mechanisms
  - , Initial failure mech. Main failure mech. Overflow/ Overtopping(58) External Erosion 64 Instability Initial failure mech. (4)Overflow/ Overtopping(7) Man-made Internal Erosion 2 19 NO initial failure mech. (12) . Initial failure mech. Instability Overflow/ (32) Overtopping<sup>(21)</sup> Internal Erosion Overflow/ 5 Overtopping (10) NO initial failure mech. 6 Unknown 3 Total 128 cases

- Background
- SAFElevee Project
- ILPD
- Macro-scale analysis
- Conclusions



Total and average breach width per failure

2499 2500 200 ≭ 180 total breach width (m) 160 E breach width/failure 140 1346 120 100 785 \* 80 564 60 458 500 302 246 40 20 0 overt.lovertopp. + instability int. erosion + instability instability + ext. erosion overf.lovertopp. + int. erosion overt. Jovertopp. + ext. erosion Int. erosion

- Background
- SAFElevee Project
- ILPD
- Macro-scale analysis
- Conclusions



#### **Conclusions and Future Work**

#### ILPD

- Background
- SAFElevee Project
- ILPD
- Macro-scale analysis
- Conclusions



- supporting detailed analyses, (1) geotechnical analysis of individual failures or (2) detailed breach analysis
- Most common levee failure mech. à external erosion triggered by overtopping/overflow (62%)
  - Internal erosion is more common in earthen dams

#### Macro-scale analysis

- Main failure mech. of the large breaches à instability or internal erosion
- Initial failure mechanisms play important role in defining the breach characteristics



### Conclusions and Future Work (2)

- Background
- SAFElevee Project

۲

- ILPD
- Macro-scale analysis
- Conclusions

- The investigation of historical levee failures is of critical importance in both risk assessments and proper design methods
- Further analysis of data from the ILPD at the event level can provide critical insights in identifying
  - (1) typical vulnerabilities and common failure mechanisms,
  - (2) breach characteristics, and
  - (3) density of breach occurrence





#### I. Ece Ozer

TU Delft Faculty of Civil Engineering and Geosciences (CITG) Department of Hydraulic Engineering Section Hydraulic Structures and Flood Risk

i.e.ozer@tudelft.nl

