

SYSTEM-RISK final conference, Potsdam 2019 Reduction of dike height

– A flood mitigation measure?

Bachmann, D.¹; Johann G.²; Schruff, T.³; Schüttrumpf, H.³

¹ University of applied sciences Magdeburg-Stendal

- ² Emschergenossenschaft / Lippeverband
- ³ RWTH Aachen University

1. Brief look to history of flood protection

Noachian flood

Prof. Dr.-Ing. Daniel Bachmann

time

1. Brief look to history of flood protection Period until the 19th C.

- From a German universal encyclopaedia (1746)
- Translation: Flooding = divine punishment and a rood of god against the godless

Ueberschwemmung oder Ueberlauff des Wassers (1746)

Da wir nun die Unglücksfälle; welche in der Natur sich ereignen; als Göttliche Straffen und Züchtigungen ansehen können, nehmlich als Straffen für diejenigen, so Böses thun, als Züchtigungen für die, welche ins künfftige zum Bösen abweichen würden; so sehen wir hieraus; wie GOTT die Ueberschwemmungen auch zur Ruthe wider die Gottlosen, und als ein Mittel die Menschen zu verbinden, daß sie vom Bösen abstehen, und Gutes thun, gebrauchen kann. (Großes Universal-Lexikon Aller Wissenschaften und Künste, welche bishero durch menschlichen Verstand und Witz erfunden worden. Bd. 48. Leipzig, 1746)

• To pray!

1. Brief look to history of flood protection

Noachian flood

Straightening of the Rhine river (19th C.)

Period until 21st C.

time

SYSTEM-RISK conference

1. Brief look to history of flood protection Period until the 21th C.

- Starting with the industrial revolution:
 - Believe in technical power
 - **Philosophy of safety:** "this dike is safe!"

- Example: Idea of **Atlantropa**, a dam at the Strait of • Gibraltar to regulate / controll the Mediterranean Sea (early 20th C.)
- All is possible with technical power! ٠

Hochschule Magdeburg • Stendal

1. Brief look to history of flood protection Period until the 21th C.

- Starting with the industrial revolution:
 - Believe in technical power
 - Philosophy of safety: "this dike is safe!"

• Technical measure will solve all problems! (higher, bigger, faster)

1. Brief look to history of flood protection

SYSTEM-RISK conference

1. Brief look to history of flood protection Nowadays

•

Hochschule Magdeburg • Stendal

1. Brief look to history of flood protection Nowadays

- Technical measures can not solve all
- Switch to a philosophy of risk
 What is now the best flood mitigation measure?

• A well-balanced mix of **technical**, **precaution and nature-based** measures

Hochschule Magdeburg • Stendal

1. Brief look to history of flood protection Nowadays: Examples of flood mitigation measures

11

Prof. Dr.-Ing. Daniel Bachmann

12

- Different kind of measures get directly comparable • by change of flood risk
 - Not by change of discharge, water level or safety factor

2. New modelling techniques required Why focus on risk?

good value to describe its effectiveness

factor

Change of flood risk due to a measure is a very Hvdrological / Hvdro-Storm surge dynamic 0 analysis analysis analysis Not change of discharge, water level or safety se analvses

2. New modelling techniques required Why a system-based approach?

Subsystems System Catchment area

• Different kind of measures are implemented in different parts of the catchment

Measure can have local but also system-wide effects

2. New modelling techniques required

Example: Measure with system-wide effect

Reduction of dike height

- It is a quite **progressive** flood mitigation measure
- Difficult to communicate, a very hot topic! (if you do not think in a System-Risk approach)
- It will always show a negative effect by a local point of view
- It can have positive effects by a system point of view
 - => System-Risk approach required!

3. Dike height reduction at the Emscher river Study area

2 Hochschule Magdeburg • Stendal

 Catchment of the Emscher river Tributary to the Rhine river

Located in the Ruhr-area
 Densely populated

• Strongly protected by dikes

3. Dike height reduction at the Emscher river Objective of the study

Risk-based evaluation of dike height reduction in 4 pre-selected dike locations

- 4 reduction steps:
 -10, -20, -50 and -100 cm
- Combinations of locations
- => 60 measures were risk-based analysed

3. Dike height reduction at the Emscher river

TOOI PROMAIDES (Protection Measures against Inundation Decision support)

- Free software for a risk-based evaluation of flood mitigation measures
- Modular designed
- Approaches for the **flood risk analysis** and their **base analyses** are available
- Direct connection to **QGIS** via database

Hochschule

3. Dike height reduction at the Emscher river

Model set-up: hydrodynamic analysis

1d-2d coupled hydrodynamic model

- 1d river model Emscher:
 - 43 km river
 - 1200 profiles
 (standard, bridges and weirs)
- 2d floodplain model:
 - 20000 elements
 - 100 x 100 m
 - 200 km² floodplain

Boundary conditions

(from hydrological /statistical analysis)

 3 scenarios (100-, 200-, 1000- year flood event)

3. Dike height reduction at the Emscher river Model set-up: analysis of consequences

Direct economic damages

- Spatial distribution of 8 land-use categories in 4 raster (25 x 25 m) and stage-damage functions (housing, industry etc.)
- Spatial distribution of stock-values

Hochschule Magdeburg • Stendal

Affected and endangered persons

Spatial distribution of population density in 4 raster (25 x 25 m)

Special objects at risk

4 categories (public buildings, cultural heritage etc.)

3. Dike height reduction at the Emscher river Model set-up: reliability of dikes

First assumption: no dike failure!

3. Dike height reduction at the Emscher river Results: Flood risk current state (M0)

- A lot of information gets available:
 - Flooded area and water levels
 - Damages to economy
 - Damages to people

3. Dike height reduction at the Emscher river Results: Flood risk current state (M0)

2 Hochschule Magdeburg • Stendal

- A lot of information gets available:
 - Flooded area and water levels
 - Damages to economy
 - Damages to people

• Summarized in flood risk per category for the Emscher area

• **Risk is quite low** for current state (under assumption of no dike failure!)

Category	Risk			
Economical risk [€ / a]				
Immobile	20.660			
Mobile	10.771			
Sum	31.431			
Risk to persons [P / a]				
Affected	7,2960			
Endangered	0,0049			
Special risk objects [Score / a]				
Public buildings	0,150			
Environmental risk	0,128			
Cultural	0,015			
Person risk	0,045			

3. Dike height reduction at the Emscher river Results: Ranking of alternatives

•	No	effect	just	numerical	differences:
---	----	--------	------	-----------	--------------

- Dike height reduction to low
 => no overflow
- Adjacent flood plain to high
 => no storage
- Current state
- Increase of flood risk

Rang	Name	
1	M134-50	
2	M1234-50	
3	M14-50	
4	M12-100	
5	M234-50	
6	M124-50	
7	MO	
58	M123-100	
59	M23-100	
60	M13-100	
61	M3-100	

3. Dike height reduction at the Emscher river Results: Measure M4-100

- **3 flooded area for current state** (1000-yearly)
- **100 cm** dike height reduction (M4-100)
- => no flooding in 1 and 2
- => new flooding in M4
- Successful from hydraulic point of view but...

3. Dike height reduction at the Emscher river Results: Measure M4-100

• ...**not** from **a risk** point of view

	Rang	Name
	1	M134-50
	2	M1234-50
	3	M14-50
	4	M12-100
	5	M234-50
	6	M124-50
	7	MO
\geq	17	M4-100
	58	M123-100
	59	M23-100
	60	M13-100
	61	M3-100

Increase of flood risk due to increased damages

4. Conclusion

- Risk philosophy and well-balanced mix of various flood mitigation measures
 => we are much further than 20 years ago
- New model techniques are required => focus on risk and on the system (System-Risk approach)

 Dike height reduction measures are a quite progressive flood mitigation measure, which can be effective

5. Outlook

General

 Analyse dike height reduction as flood risk mitigation measure in less populated catchments

Emscher river

 Include dike reliability in the risk analysis (e.g. by fragility curves)

SYSTEM-RISK final conference, Potsdam 2019

Reduction of dike height

– A flood mitigation measure?

Bachmann, D.¹; Johann G.²; Schruff, T.³; Schüttrumpf, H.³

Thanks for your attention!

¹ University of applied sciences Magdeburg-Stendal

- ² Emschergenossenschaft / Lippeverband
- ³ RWTH Aachen University

