Hydraulic load interdependencies: a case study on a regional flood defense system in the Netherlands

Stephan Rikkert, Matthijs Kok

stowa

s.j.h.rikkert@tudelft.nl

System Risk Conference, Potsdam 2019

Content

- Introduction
- Method
- Case studies
- Conclusions

TUDelft

Flood defences in the Netherlands

Introduction Method Case studies Conclusions

±11.500 km: regional

Polder canals

Approximately 80% of regional flood defences consists of polder canal levees (in Dutch: boezemkaden): >8,000 km (https://beeldbank.rws.nl, Rijkswaterstaat / Rob van der Laag)

Introduction Method Case studies Conclusions

(https://beeldbank.rws.nl, Rijkswaterstaat / HHRS)

TUDelft

Levee failures

Tuindorp Oostzaan, 1960 *Cause*: unknown, most likely ruptured water pipe

Wilnis, 2003 *Cause*: drying of a peat dike

Description

Schematic representation

Phase 1

- Hydraulic load larger than levee resistance;
- Breach starts growing

Phase 2

- Breach has grown;
- Adjacent polder fills with water;
- Canal water level drops;
- 'Surviving' levees 'relieved'.

Objective

TUDelft

Develop a method to include hydraulic load interdependency in flood safety assessments for regional flood defense systems

Method

Introduction Method Case studies Conclusions

Method

Risk = probability x consequences

Case study Delfland

Berkelse **B1** Zweth g D Schie **BWO-kering** B2 0.5 1.5 km n

Introduction Method **Case studies** Conclusions

TUDelft

Introduction

Case studies

Conclusions

Method

Case study Delfland

Case study HHNK

Water board Hollands Noorderkwartier

Schermerboezem

> 660 km of levees

Water level drop

Introduction Method **Case studies** Conclusions

ŤUDelft

Levee breach

Fragility curves

Failure probability as a function of the water level

Introduction Method **Case studies** Conclusions

Fragility surface

Failure probability as a function of **BOTH** the water level **AND** precipitation

Introduction Method **Case studies** Conclusions

1.0

0.8

0.6

- 0.4

- 0.2

ŤUDelft

Results

Event:

- Water level:
- Precipitation:
- -0.40 m+NAP 80 mm in 24 hrs

Results

	Pf [-]	
Levee	No HLI	HLI
А	0.033	0.027
В	0.1	0.056
С	0.1	0.066
D	0.1	0.054

TUDelft

Preliminary conclusions

- Levee breach affects hydraulic loads;
- Breach location matters;
- Not taking into account for hydraulic load interdependency leads to errors in risk assessment.

Hydraulic load interdependencies: a case study on a regional flood defense system in the Netherlands

Stephan Rikkert, Matthijs Kok

stowa

s.j.h.rikkert@tudelft.nl

System Risk Conference, Potsdam 2019