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1 ABSTRACT 4

1 Abstract

This study aims at investigating the effect of material properties of granular materials
on the structural development of convergent Coulomb wedges in analogue experiments.
Analogue materials used in this study include natural quartz sand, glass beads of different
grain size (40-800 ym) and corundum sand. Internal friction and cohesion of analogue
materials, as well as basal friction and cohesion of material on Alkor foil are both measured
with the Schulze Ring-Shear-Tester. The influence of sieving style on material properties
and experiment outcome is investigated by performing experiments in which material
is sieved from heights of 10 cm to 90 c¢cm by different people and the resulting bulk
density of the granular material is measured. A series of systematic analogue experiments
in both the push and pull setup are performed for different analogue materials. The
experiments are documented with digital sidewall pictures and 3D laserscanning. The
digital images are evaluated with Particle Image Velocimetry (PIV) to visualize the strain
evolution over time. Thrust spacing, activation time and reactivation of in-sequence
thrusts are measured for each experiment. A new spatially and temporally high-resolution
approach to measuring surface slope is introduced and applied to image analysis and to
the evaluation of profiles obtained with laserscanning. This allows the visualization of the
temporal development of surface slope, wedge width and wedge height. This procedure is
compared to other methods of determining surface slope. The effect of sidewall friction on
experiments is quantified by measuring lateral changes in surface slope. This dataset is
also used to identify the main differences between pushed and pulled wedge experiments.
Surface slope was found to be highly transient for pushed wedge experiments, whereas it
reached and attained a stable value in pulled experiments. Pushed wedges are supercritical
and they typically exceed the critical surface slope by 5-15°. Wedge width and wedge
height grow as square root functions of convergence. The density of granular material is
highly dependent on sieve height. Sieving from a height of less than 50 cm produced a
bulk density that was up to 10% less than the maximum bulk density. Glass beads were
found to produce a more regular structure of in-sequence-thrusts in both, space and time,
than sands, while displaying less variability. Pushed wedges are not described by Critical
Taper Wedge Theory, because they exceed predicted surface slope by more than 5-15°.



